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r-hopping transient currents in thin dielectric layers with 
macroscopically non-homogeneous spatial distribution of 
hopping centres 

J Rybickits, S Felizianit, G Mancinit and M Chybicu 
t lstiluto di Matuoatica e Fsica, Univmila di Qmerino, Camerino (MC), Italy 
t Faculty ot Echnical Physics and Applied Mathematics, TkChniQl Univemity of Gdakk, 
Majakowsltiego 11/12 80.952 Gdalisk, Poland 

RseNed 4 January 1991. in final form 14 October 1991 

Abstrpd. The p-nt work is a contribution to the undemanding of transient currenu, 
which are usually discussed in lhe mntexl of the dassical time-of4ight @OF) experimenl. 
ln panicular, r-hopping pulse injection transient currents in dielectric layers with a 
maaampically non.homcgeneous disuibulion of hopping centres have been mwstigaled 
with the aid of the Monte Carlo simulation, acmrding to a n w  algorithm. Both the 
shape of the transient w m n t s  and the value of the eiieclive TOF are found to depend 
stmngly on the degree of macrosmpic variations in the hoppingcentre mncenlration oyer 
the layer thickness. For a smwth change in space cenlre concentration, the transienl 
m n u  may be described by simple analytical expressions, suitable for the estimation 
of the spatial distribution of hopping centres h m  experimental data. 

1. Introduction 

One of the most powerful methods for investigation of the transport properties of 
thin dielectric layers is the classical time-of-flight (MF) experiment (Scher and Mon- 
troll 1975, Arkhipov and Rudenko 1982, Rudenko and Arkhipov 1982a,b, Kao and 
Hwang 1981, Marshall 1983a, Weissmiiller 1985). The well developed theoretical 
description, referring mainly to multiple-trapping transport, makes it possible to de- 
termine microscopic parameters, such as band mobility, trap concentration and its 
energetic distribution and trapping cross section. However, until recently, theoretical 
papers on the MF experiment dealt only with the case of a spatially uniform average 
trap density. In real thin dielectric layers, at least in the near-surface region, the 
spatial distribution of traps may be macroscopically non-homogeneous, owing to the 
layer preparation, diffusion of atoms from cOntactS or ambient atmosphere, chem- 
ical reactions, etc (see, e.g., Kao and Hwang (1981, p 150), SamoE and Zboifv&i 
(1978)). For the multiple-trapping transport mechanism, the influence of the spatial 
non-homogeneity in the trap distribution on the transient currents measured in the 
constant-temperature TDF experiment has been investigated by Rybicki and Chybicki 
(1988, 1989a, 1990), Rybicki er a1 (19!Xa,b), and on the currents measured in the 
thermally stimulated TOF experiment by Tomaszewicz er a1 (1990) and Rybicki er a1 
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(1991). The present work is the first step towards understanding the influence of the 
layer spatial non-homogeneity on hopping-transport transient currents measured in 
the isothermal TOF experiment 

A theoretical description of the hoppingtransport Uansient currents is rather diffi- 
cult, and thus much attention has been paid to numerical studies (Bdttger and Bryksin 
1985). As far as the Monte Carlo simulation of the TOF experiment for r-hopping 
(nearest-neighbour hopping) transport is concerned, several studies have been pub- 
lished (BLlssler 1981, Marshall 1978, 1981, 19834 Ailer and Silver 1982, Ries and 
Bgssler 1987). None of these papers deals with the experimentally important case of 
spatially non-homogeneous density of hopping centres. In the present paper we study 
to some extent small-signal pulse injection transient r-hopping currents in dielectric 
layers with a spatially non-homogeneous density N ( z )  of hopping centres. More 
pdesely, we deal with transient currents measured in the classical TOF experiment, 
for thin dielectric layers revealing an r-hopping mechanism of transport Such a 
mechanism is found in disordered hopping systems of relatively narrow energetic dis- 
tribution of hopping centres, especially at elevated temperatures (Bdttger and Bryksin 
1985, p 15). In the illustrative part of the paper (section 3), we present and discuss 
some examples of Monte Carlo results, showing a very strong dependence of both the 
shape of the transient currents and the value of the effective TOF on the degree of 
macroscopic variations in the hopping-centre concentration over the layer thickness. 
Because our algorithm for simulation of transient currents differs from those previ- 
ously used (cf Marshall (1978) and Mssler (1981)). we describe it in some detail in 
section 2 Further, some simple analytical expressions describing approximately the 
simulation results are obtained (section 4). The potential usefulness of the presented 
simple analytical approach for estimating the spatial distribution of r-hopping centres 
from experimental data is underlined, which is the second aim of the present paper. 
Section 5 contains concluding remarks. 

2 Simulation algorithm 

The Monte Carlo simulation of transient currents corresponding to the isothermal 
TOF experiment for r-hopping transport was performed with the aid of two different 
algorithms. The older algorithm was developed by Marshall (1978). and the more 
recent algorithm by W l e r  (1981) (cf Schdnherr el af (1981)). The main difference 
between them ties in the manner of choosing the hop, which is assumed to be realized 
in nature; both workers calculate random hopping times to every neighbouring site, 
from which Marshall accepts the shortest as that realized in nature, whereas Mssler 
(working with hopping probabilities rather than with hopping times) accepts the most 
probable hop. In both algorithms, however, prior to performing random walks of 
carriers, the distribution of hopping centres is generated at random in a certain box 
and is kept ked ,  at least for a given number of individual carrier walks. From a 
technical point of view the full information on the generated centre distribution is 
stored in a RAM during the program execution. Both Marshall and Basler claim 
their results to be independent of the simulation box dimensions (rectangular prisms 
containing some lo9 and lo5 sites, respectively). In our case OF a spatially macro- 
scopically non-homogeneous centre distribution, however, in order to obtain results 
free of uncontrolled box-size effects, we would have to use the simulation boxes mn- 
taining many more centres than in the above-mentioned studies. Eustly, the finite 
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size of the simulation box leads to a systematic error because, conserving the rectan- 
gular shape of a simulation box representing the sample, the ratio of the number of 
nearsurfam centres (with an incomplete environment) to the number of bulk centres 
(with a complete environment) changes along the box length. Thus, the systematic 
error due to finite dimensions of the simulation box depends on the degree of spatial 
changes in the average hopping-oentre deasity, making it difficult to recognize pure 
effeca due to spatial non-homogeneity. Secondly, any reasonable representation of 
the random centre distribution with macroscopically smoothly varying average density 
requires rather a large number of centres within the simulation box. The numerical 
tests that we performed show that the box-shindependent results would be obtained 
for numbers of sites, the information for which can hardly be kept in the usually a0 
cessible RAM, and the usage of the disc memory makes the computer (VAX) run 
times unacceptable. Because of this we have developed a new algorithm (Rybicki 
and Chybicki 1989b), which is completely independent of size effects in directions 
perpendicular to the field direction and thus is particularly suitable for simulations of 
transport properties of thin layers in a direction perpendicular to the layer surface. 

The individual hop in our algorithm is performed as follows. Let the carrier 
be Iodized at some time f at a distance z from the injecting contact (located in 
r = 0). The local homogeneousdensity environment is generated in the form of a 
sphere centred at E, containing a given number n of neighbours. If the hopping- 
centre concentration is denoted by N(I), the radius R(r) of the sphere is given by 
4 7 r N ( x ) R 3 ( z ) / 3  = n + 1. For each hop the new positions of n neighbours are 
generated at random within the local environment of radius R(r).  In particular, we 
choose their random spherical coordinates r; and 8; according to 

ri = R ( z ) X 1 l 3  (1) 
cos ei = ZY - I i =  1, ..., n 

where X and Y are random numbers from the interval (0, 1). The third coordinate 
'pi need not be specified. The hopping times t i  are generated according to (Marshall 
1978) 

t i  = - l o g Z e x p ( - z a r ,  - W T ;  cosBi) (2) 
where 2 is the random number from the interval (0, l), 01 is the reciprocal Bohr 
radius, w = q E / k T  (q  is the elementrary charge, E the external electric field, k 
the Boltzmann constant and T the sample temperature), and ri COS Bi = zi is the 
distance between two successive centres along the extemal electric field E. It is 
further assumed, following Marshall (1978), that the hop corresponding to tmi, = 
miqi)f , ,  i = 1,. . . , n is realized. After the minimum-time hop is performed, the 
new position of the carrier becomes I + Azmin = I -!- rmin cos Bmi,, where the 
subscript min corresponds to tmin. The new position is being assumed at the moment 
t+tmi,. Such a procedure is repeated until the carrier reaches I = L, where L is the 
layer thickness. For initial hops, r < 0 may occur. In such a case, z is set to 0. The 
temporal and spatial evolution n(r,t) of the injected carriers has been obtained by 
averaging over IO' random walks of individual carriers started at t = 0 and z: = 0. 
The transient currents induced in the external circuit have been calculated on the 
basis of the well !mown formula (see, e.g., Leal Rrreira (1977)) 
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where no is the number of injected camers. Thus equation (3) gives the particle 
current per carrier. 

As mentioned before, in mntrast with the previously used algorithms, the algo- 
rithm described above avoids the surface effects on the box boundaries parallel to 
the external field. The generation of a new local random environment of each actual 
position eliminates both repeated easy jumps between two close centres and hard 
jumps between clusters, which were present for example in the Marshall algorithm. 
In order to gain some insight into the behaviours of the different algorithms, we have 
calculated some transients for the same parameters with the aid of our new algorithm, 
and Marshall's algorithm (Bassler deals with mmpositional disorder, whereas we, in 
a similar way to Marshall, consider purely positional disorder). It turned out that 
our algorithm gives current values somewhat higher than Marshall's @y a factor of 
1.2-1.4), leaving all the qualitative features essentially unchanged (figure 1). Thus, 
the difference between the algorithm presented here and Marshall's algorithm leads 
to slightly different effective velocities of the carriers along the external electric field, 
the effective velocity being slightly larger in our algorithm. 

Ot 
0' 

Figure 1. Comparison of Vansienl "ms calculated with lhe aid 01 lhe Manhall 
(1978) algorithm (e) and the algorithm described in Ule present work (0) lor lhe same 
parameters (d = 3; L = 50N;''3; Y = 1 s-'). 

3. Simulation results 

The simulation has been performed for a' = 3, 5, 8, where a is the reciprocal Bohr 
radius expressed as N0-"3/rB, where rB is the Bohr radius of the localized state 
and N o  is the maximum centre concentration. In all cases, No was equal to unity; 
thus the length is measured in units equal to the side length of a cube containing 
on average one hopping centre in the region of their maximum concentration. The 
spatial variations in the average density N ( x )  of hopping centres were obtained 
by introducing the shape function S(z)  : N ( + )  = N,S(x), 0 < x < L. For 
illustrative calculations showing the influence of mrious spatial centre distributions 
on transient currents, the shape function S(z) has been chosen to be exponential 
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with a maximum centre density at one or both of the contacts, and a Gaussian spatial 
mntre distribution with a maximum centre density in me middle of the layer thickness 
(cf the distributions discussed by Kao and Hwang (1981, ch 3)): 

S(1:) = e x p ( - + / D )  (4) 

S(1:) = e x p [ - ( L  - .)/Dl (9 
S(z) = e x p ( - + / D , )  + e x p [ - ( L -  +)/&I (6) 
S(+) = e x p [ - ( L / 2  - Z ) ~ / D ~ ]  (-0 

D, D ,  and D ,  being the non-homogeneity parameters. The layer thickness was 
L = 150N,-1’3. The ratio L I D  may be referred to as the non-homogeneity degree 
of the spatial r-hoppingcentre distribution. 

The currents obtained are shown in figures 2-4 and later also in figures 6 and 
7 for a’ and L I D  specified in the captions. As easily seen, the influence of the 
spatial non-homogeneity of centre distribution on transient currents is very distinct 
(note the log-log scale). The influence of the spatial non-homogeneity on the effec- 
tive m F  is more pronounced for larger a’. However, a non-dispersive character of 
the currents is conserved (the existence of a sharp current decay after the effective 
m ~ )  (Marshall 1978). For a hopping-centre density (4) exponentially decreasing in 2, 
the carriers with increasing 1: enter the regions of lower centre concentration, which 
results in exponentially longer hopping times, and thus in a strong decrease in the 
current (reversely for the centre distribution (5)). Examples of spatial distributions 
of the density of propagating charges at several chosen moments of time are ShmQ 
in figure 5. The camer packets shown as full circles, open circles, crosses and open 
squares correspond to the same time and different spatial distributions of hopping 
centres; full circles and open circles correspond to the homogeneous distribution 
No = constant, and crosses and open squares to the centre distributions (4) and (S), 
respectively. The decrease in the current in the regions of decreased centre density 
remains in opposition to the case of multiple-trapping transport (Rybicki and Chy- 
bicki 1988, 1989, Rybicki er a1 1990a,b). In the latter m e  the trap concentration 
decreasing (increasing) in I results in the increase (decrease) in the current Despite 
this obvious qualitative difference, r-hopping transient currents are much more sen- 
sitive to the non-homogeneity parameter L /  D than are multiple-trapping currents. 
The transient currents obtained for the centre distributions (6) and (7) are presented 
in figures 6 and 7, respectively. In these figures we have also shown the influence 
of the local environment size taken for simulation. The curves through open circles 
have been calculated for n = 36 neighbours, whereas the curves through full circles 
(in a similar way to figures 2-4) for n = 8 neighbours. For n > 36 the effect of the 
local environment size becomes almost saturated. 

After this rather illustrative section we now pass to a very simple analytical ap- 
proach to r-hopping transient currents, giving the experimentalist a potential tool for 
a rough estimation of the r-hopping-centre distribution over the layer thickness on 
the basis of TOF data. 

4. Analytical considerations 

The effective velocity ueR that the carriers assume under the action of the external 
electric field (related in a straightfonvard way to the current induced in the external 
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3 4 5 6 
(0.3 19 t )  

Figure Z r-hopping transient currents for e' = 3.0 and exponential spatial centre dis- 
tributions (4) and (5): atwe (a), L I D  = 0 (homogeneous hoppingentre distribution); 
NIW @). distribution (4). L I D  = 1.0; cum (c), distribution (S), L I D  = 1.0; CUIVC 

(d). dhtribution (4), L I D  = 2.0; NIW (e), distribution (S), L I D  = 2.0; -, Monte 
Carlo simulation; - - -, currents calculated with the aid d numerical solution oI (11) 
and (12); -.-.-,with the aid of the approximate equation (IS). 

circuit) depends in non-homogeneous layers on the local centre density and may be 
written as 

= Peff(")E = < L (8) 

where peff(z)  is the +dependent effective mobility of the propagating carrier packet 
and ~ ( t )  is the actual position of the centroid of the hopping carrier packet pea($) 
may be written as (Marshall 1981) 

P ~ ~ Z )  = (w/6kT)pZ(z) exp [--2w(z)l Q) 
where p(z) is the average distance between r-hopping centres given by 

p ( z )  = [ N  ( z ) ] - * / 3  (10) 

and U is the frequency factor. Thus we have 

f ief f (z)  = A, [N$(X) ] - * '~  exp{ -Za[N,S(~ ) ] - ' /~ )  (11) 
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I 
6 7 8 

log lJtl 
FIgure 3. r-hopping transient currents for 01' = 5.0 and exponential spatial centre 
distributions (4) and (5): a w e  (a), L I D  = 0 (homogeneous distribution); a w e  (b), 
distribulion (4), L I D  = 0.5;  a w e  (c), distribution (5). L I D  = 0.5;  cuwe (d), 
distribution (S), L I D  = 1.0; cum (e), distribution (4h L I D  = 2.0. I h e  meaning of 
the "er is 2s in figure 2 

with A, = qu/6kT. Clearly, the actual position of the carrier packet centroid +( t )  
is 

and thus equations (11) and (12) constitute an integral equation for + ( 1 ) ,  which 
cannot be solved without S(+) defined aprion. However, for a given shape function 
S(+) the inegral equations (11) and (12) may be solved at least approximately. For 
example for S( +) given by (4) we have 

where peR(l)  pea(+( t ) ) .  For L < D the exponent in the second exponential 
factor may be linearized, and thus 
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Flgum A r-hopping transient currents for a' = 8.0 and aponential spatial Oentre 
distributions (4) and (5): wne (a), LID = 0 (homogeneous distribution); cuwe (b), 
distribution (4). LID = 0 . 5 ;  cuwe (c), disvibution (5). L I D  = 0.5; CUM (d), 
distribution (4), LID = 1.0. She meaning of the N N S  is as in Qure 2 

. .  ... 

Figure S Spatial distributions of the canier packets: 0 ,  OT' = 3, ut = 2 x lo', 
homogeneous Entre distribution; x, a' = 3, ut = 2 x lo', distribution (4), L I D  = 1; 
0, a' = 3, vt = 2 x lo', distribution (S), L I D  = 1; 0, a' = 8, ut = 2 x loB, 
homogeneous centre distribution. Note the increasing packet dispersion with increasing 
U'. 
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log l 9 t l  Iog [ I I t l  

Figure 6 Monte Cad0 r-hopping transient mmnU 
Ior d =  3.0 and double-exponential spatial centre 
distribution (6): a w e  (a), L I D ,  = LID2 = 5 ;  
0 . u ~  @A LID1 = LID? = 3.0; e. R = 8 
neighbours m each Local environment; 0, n = 36 
neighboun in each 10011 environment. 

Figure 7. Monk Qrlo r-hopping transient cur- 
renu lor P’ = 3.0 and Gaussian spatial centre 
distribution (7): mme (a), L 2 / 4 D 2  = 3.0; “e 

@). L 2 / 4 D 2  = 2.0; cum (E), L 2 / 4 D 2  = 1.0; 
e, n = 8 neighbours in each local emimnment; 
0. n = 36 neighbours m each local environment. 

-213 where yo = A,No e x p ( - 2 a ’ ) .  The logarithm of both sides of equation (14) is K 
d u d ,  on differentiation with respect to i, to a simple separated ordinary differential 
equation, which is solved immediately as 

~l&(r(t) = 4 t 1 2 ~ -  1 ) / 3 ~ 1 ~ +  + 11. ( 1 9  

The latter expression, together with (8), yields the electric current i(l) = 
enowen( z( t)). The corresponding formula for the hoppingcentre distribution (5) 
may be obtained in the same way. ‘Ransient CurrentS obtained from (8) with per 
calculated by numerically solving (11) and (12) are shown in figures 24 as broken 
curves, and those based on the approximate solution (15) as chain CUN~S. In both 
cases the prefactor po has been taken from the Monte Carlo simulation. In our 
simple model the packet spatial dispersion has been neglected, and thus the current 
falls to zero at the moment z = L is reached. This means that our analytical resuls 
are not expected to be precise for times close to the effective TOF. 

5. Concluding remarks 

In the present work we have shown with the aid of the Monte Carlo simulation 
the remarkable influence of the spatial non-homogeneity in the r-hopping-centre 
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distribution on transient Currents measured in the classical TOF experimenr The 
r-hopping current-time characterktics turn out to be much more sensitive to the 
layer non-homogeneity than are the multiplotrapping characteristics. Thus, in any 
interpretation of the TOF measurements for hopping transport in the framework of 
a uniform centre spatial distribution, special care must be paid to produce really 
homogeneous samples or, alternatively, the measurement results must be interpreted 
with the aid of models taking into account the spatial wriations in centre density. 
Regarding the latter possibility, as is easily seen, our very simple model for r-hopping 
transients described in section 4 leads for times shorter than the effective TOF to 
quite good agreement between the analytic formulae and the Monte Carlo results, at 
least for a slowly varying centre density. This suggests that the model could be used 
to determine, or at least to estimate, the spatial r-hoppingcentre distribution on the 
basis of experimental TOF data. In order to do this, one should assume S(x) in the 
form of a family of one-parameter (or more) functions and fit them to get the closest 
coincidence between the measured and calculated CUN~S. 
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